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Abstract
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number of return predictors. We adopt Bayesian optimization with Gaussian process
that significantly improves the efficiency of hyperparameter tuning in machine learning.
Simulation studies show that our methods accurately predict the conditional quantiles
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1 Introduction

The modern asset pricing literature has been primarily focused on modeling expected stock returns

in the cross section under the linear factor model framework of Sharpe (1963), Ross (1976), Fama

and French (1993, 2015) and many others. A large number of firm characteristics have been

identified in the literature that has predictive power for cross-sectional returns.1 The important

work of Gu et al. (2020) breaks the linear factor model tradition by developing machine learning

models that allow for highly nonlinear relations between expected stock returns and a large number

(up to 1,000) of return predictors. Gu et al. (2020) show that these machine learning models

significantly outperform traditional linear factor models in forecasting future expected stock returns

out of sample.

The literature has been less concerned about modeling the conditional distributions of future

stock returns. However, conditional distributions contain much richer information than conditional

expectations, given the well-known fact that stock returns tend to be highly skewed and exhibit fat

tails and extreme values. For the 17,947 U.S. stocks included in our empirical analysis, Figure 1

provides the histograms of the skewness and kurtosis of each stock calculated using historical

returns between 1987 and 2016.2 Specifically, Figure 1a shows that most stocks are right-skewed

with skewness ranging from about -5 to 15, while Figure 1b shows that most stocks exhibit fat tails

with kurtosis ranging from 0 to 255.3

Figure 2 further illustrates potential advantages offered by conditional distributions in making

investment decisions. Consider two firms whose monthly returns follow two de-meaned Gamma

distributions, where R1 ∼ −Gamma(5, 1) + 5 is left-skewed and R2 ∼ Gamma(5, 1) − 5 is right-
1Green et al. (2013), Green et al. (2017), and Harvey et al. (2016) report more than 300 return predictive

signals.
2Our empirical analysis uses the same data as that in Gu et al. (2020). Kindly made available by

Professor Dacheng Xiu, it contains monthly returns of stocks listed on the NYSE, AMEX, and NASDAQ,
94 firm characteristics, and 12 macroeconomic variables between January 1978 and December 2016.

3Bai and Ng (2005) provide various tests for skewness, kurtosis, and normality for time series data.
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skewed. While R1 and R2 both have zero means, Figures 2a and 2b show that R1 has a median of

0.34%, while R2 has a median of -0.34%. Some investors might prefer R1 because it has a higher

probability (50%) of exceeding 0.34% than R2 (38%). Tail behaviors of return distributions become

more crucial for investors who prefer stocks that can have extreme positive or negative returns.

Figures 2c and 2d show that the 95% quantiles of R1 and R2 are 3.3% and 4.29%, respectively,

whereas the 5% quantiles of R1 and R2 are -4.18% and -3.08%, respectively. It is clear that R1

is more likely to exhibit extreme negative returns, and thus it could be preferred for short selling,

while the opposite is true for R2.

In this paper, we develop machine learning methods to forecast the conditional distributions of

stock returns by forecasting the conditional quantiles through quantile regression. More specifically,

denote f(ri,t+1|xi,t) as the conditional density for firm i, where ri,t+1 is the stock return between t

and t+1 and xi,t is a high dimensional vector of return predictors at t. For τ ∈ [0, 1], let qτ (xi,t) de-

note the τ -th quantile function, which by definition is the inverse conditional cumulative distribution

(cdf) function F −1(τ |xi,t), i.e., qτ (xi,t) = F −1(τ |xi,t). Machine learning makes it possible to model

qτ (xi,t) as a highly nonlinear function of xi,t, and we estimate qτ (xi,t) using quantile regression

based on large panel data to obtain q̂τ (xi,t).4 Therefore, if τj (j = 1, 2, . . . , J) are independently

drawn from the uniform distribution on the unit interval, U[0,1], then q̂τj (xi,t) = F̂ −1(τj |xi,t) give le-

gitimate random samples from the conditional density f(ri,t+1|xi,t). Thus q̂τj (xi,t) (j = 1, 2, . . . , J)

can be used to form an empirical version of the conditional distribution and to calculate charac-

teristics of the conditional distribution, such as mean, median, quantiles, tail probabilities, and

higher moments (e.g., variance and skewness). In our empirical analysis, to simplify the numerical

procedures, we consider J = 100 equally spaced grid points τj on the unit interval (ranging from

0.5% to 99.5%) and compute the corresponding q̂τj (xi,t)’s.

Conditional mean prediction in Gu et al. (2020) involves estimating linear and nonlinear ex-
4In our panel data analysis, the dependent and independent variables are, respectively, the τ -th quantiles

and the return predictors of all the firms during the model training and validation period.
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pected return functions of a large set of return predictors by minimizing the mean squared error.

Similarly, conditional distribution prediction in this paper involves estimating linear and nonlin-

ear conditional quantile functions of the set of predictors through quantile regression for each of

the 100 τj ’s. While conditional mean prediction only requires one least squares regression, condi-

tional distribution prediction is computationally more challenging because it requires 100 quantile

regressions.

Gu et al. (2020) introduce various machine learning models to capture potential nonlinear

dependence of the expected returns on the predictors. Given that the relationship between the

conditional distributions and a large number of predictors could be even more complicated, we

also adopt powerful machine learning models in our quantile regression analysis. In addition to

the widely used linear models, such as principal component regression (PCR) and penalized linear

regression (Lasso quantile regression), we also consider a three-layer perception neural network

(NN3) and a tree-based boosting model, Light Gradient Boosting Machine (LightGBM), which

has the potential to capture the complicated nonlinear dependence of quantiles on the predictors.

While most existing studies on machine learning choose hyperparameters through grid search, we

adopt Bayesian optimization with Gaussian process to tune the hyperparameters of LightGBM.

The Bayesian optimization approach significantly improves the efficiency of hyperparameter tuning

and leads to better model performance.

We conduct extensive simulation studies to examine our methods’ ability to uncover complicated

conditional distributions. The data-generating processes have highly skewed and heavy-tailed error

terms in our simulation setup. The conditional mean can be either a linear or nonlinear function

of the return predictors. And the error terms can be heterogeneous among all firm-time specific

observations. For each setup, we generate 15 years of monthly returns for 200 firms, with 36,000

observations in total. For conditional distribution prediction, at the beginning of each year, we use

the past nine years of data to train and validate machine learning models. Specifically, with chosen

hyperparameters, we use the first seven years of data to train the models and the next two years of
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data to validate their performance under the associated chosen hyperparameters. We then fix the

model with the optimal hyperparameters and use the following twelve months of data to provide

monthly out-of-sample forecasts of conditional distributions. We repeat this procedure until the end

of the sample. We find that LightGBM has an excellent performance in capturing the conditional

distributions for both the linear and nonlinear simulation setups, although the performance is

slightly worse for the nonlinear case. NN3 and Lasso provide comparable forecasting accuracy in

the linear case but degrade in the nonlinear setup. PCA cannot predict future return distributions,

mainly due to the independence among simulated predictors.

We apply our methods to forecast the conditional distributions of the returns of all the U.S.

stocks listed on the NYSE, AMEX, and NASDAQ between 1978 and 2016. Our empirical analysis

follows the same tuning and training scheme used in the simulation studies. Since we need nine

years of data for model training and validation, our out-of-sample forecasts start in January 1987

and continue monthly until December 2016.

We then evaluate the out-of-sample performance of the three machine learning models in three

ways. First, we examine whether these models can accurately predict the central tendency of

the returns, compared to the regression mean predictions, which are obtained by minimizing the

mean squared error with the same machine learning methods. We also define quantile mean (q-

mean hereinafter) as the average of the 100 predicted quantiles. We find that the regression mean,

the q-mean, as well as the median (obtained from quantile regressions with τ = 0.5) from the

three machine learning methods perform equally well in predicting future realized returns with

comparable forecasting errors.

Second, we evaluate the performance of the four machine learning models in forecasting the

conditional densities using the likelihood-ratio (LR) statistical tests developed in Berkowitz (2001).

The comparison shows that LightGBM produces the most accurate density forecasts, followed by

NN3, PCR, and then Lasso. The proportions of firms that pass (at the 5% significance level) the

Berkowitz’s (2001) LR test are 80.32% for LightGBM, 70% for NN3, 70.20% for PCR, and 62.39%
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for Lasso. In appendix C, we address the multiple comparisons problems that Chordia et al. (2020)

stress.

Finally, we examine the performance of long-short portfolios constructed using regression mean,

q-mean, and median from the three machine learning models. Stocks are sorted into long (short)

portfolios if they have high (low) values of these measures. One of the most robust results is

that the long-short portfolios sorted on median have higher cumulative returns and Sharpe ratios

than those sorted on regression mean for all four models. Due to its robustness to outliers, the

median could lead to lower in-sample over-fitting risk and better out-of-sample forecasts. Another

result is based on q-mean. While the median has the highest profits for PCR and Lasso than

q-mean and regression mean, q-mean has the best performance for LightGBM with significantly

higher cumulative returns than the median and the regression mean. Given that q-mean essentially

utilizes all the information of the conditional distributions to sort stocks, it is not surprising that

q-mean works well for LightGBM, for it captures the conditional densities much better than PCR

and Lasso.

We also consider other long-short portfolios sorted on other statistics derived from the predicted

conditional distributions. These statistics include each single predicted quantile, pairs of predicted

quantiles, and pairs of predicted tail probabilities of generating extreme positive and negative

returns. Most long-short portfolios based on information of conditional distributions outperform

the ones based on regression mean.

A huge amount of literature has been developed in economics and finance to model time-varying

volatility and even the entire conditional distribution of economic and financial time series, such

as the famous ARCH-GARCH models of Engle (1982) and Bollerslev (1986), and the regime-

switching model of Hamilton (1989). Other models have considered non-Gaussian distributions,

such as Student-t or Laplace distributions, for the error terms in time series models.5 However, these
5See, for example, Kon (1984), Nelson (1991), Peiro (1994), Baixauli and Alvarez (2004), Kelly and Jiang

(2014), and Hohberg et al. (2020), to cite just a few.
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parametric models mainly focus on time series analysis. They could also be overly restrictive and fail

to capture the true data-generating processes, as shown by Hong et al. (2004), Egorov et al. (2006),

and Hong et al. (2007) in their studies of the performances of these types of models in out-of-sample

density forecasts of spot interest rates, bond yields, and exchange rates. While several studies

have adopted quantile regression in estimating conditional distributions, these studies typically (i)

consider only linear quantile functions with a limited number of predictors and (ii) estimate the

conditional distributions of a small number of time series6.

Our paper makes important methodological and empirical contributions to the empirical as-

set pricing literature. Methodologically, we aaply machine learning methods for forecasting the

conditional quantiles and distributions of the returns of thousands of individual stocks in the

cross section. The approach is intuitive and can accommodate highly nonlinear relations between

conditional quantiles and a large number of return predictors. We also introduce the Bayesian

optimization approach based on Gaussian process, which significantly improves the computational

efficiency of machine learning methods by automatically tuning the multivariate hyperparameters.

Empirically, we provide strong evidence that conditional distributions contain much richer infor-

mation than conditional means in forecasting future stock returns and can lead to much better

results in long-short investing.

The rest of the paper is organized as follows. Section 2 introduces our methodology for fore-

casting conditional distributions based on quantile regression through machine learning. Section 3

provides simulation studies on the validity of our proposed methods. In Section 4, we conduct an

empirical study that applies our methods to the U.S. stock market data between 1978 and 2016.

Section 5 concludes.
6Melly (2005), Chernozhukov et al. (2013), and Callaway and Huang (2020) among others apply quantile

regression to causal inference in labor economics, while Fortin et al. (2011) provide a review of distributional
methods in economics. Machado and Mata (2005) applies linear quantile regression to predict conditional
distributions using small panel data, while Zhao (2013) applies linear quantile regression to estimate con-
ditional distributions using time series data. Instead of quantile regression, Foresi and Peracchi (1995) and
Anatolyev and Baruńık (2019) estimate conditional distributions in time series setting using odds ratios and
hierarchical models, respectively.
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2 Quantile Regression with Machine Learning

Suppose we observe stock returns on date t ∈ {1, . . . , T} for Nt listed firms, where the number

of listed firms could change with time. Denote the return of firm i at time t + 1 as ri,t+1. The

asset pricing literature has identified a long list of firm-level characteristics (see Green et al. (2017)

and Gu et al. (2020) for a summary) that have potential predictive power for future stock returns,

which we denote as a column vector xi,t for firm i on date t.

Various methods can predict future stock returns for given xi,t. The simplest and most widely

used one is linear regression. For example, we could estimate the expected returns using cross-

sectional regression for each t. Then linear regression is equivalent to solving the following opti-

mization problem at the specific t:

β̂t = min
β∈Rp

∑
s∈Tt

Ns∑
i=1

(ri,s+1 − β⊺xi,s)2, (1)

where Tt contains the years used to train the model in order to forecast the returns in year t + 1,

β is a p-dimensional column vector of regression coefficients and the estimation of the expected

return Et(ri,t+1|xi,t) is β̂⊺
t xi,t.

To overcome the limitations of linear models, Gu et al. (2020) introduce nonlinear machine

learning methods to forecast future stock returns by considering the following optimization problem:

f̂t = min
f∈F

∑
s∈Tt

Ns∑
i=1

(ri,s+1 − f(xi,s))2, (2)

where f(x) is potentially a nonlinear function in a function space F , of x, and the expected return

Et(ri,t+1|xi,t) is f̂t(xi,t).

However, both the linear and nonlinear models based on the least squares objective function

focus on predicting the conditional means of future stock returns. Conditional means, however, fail
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to capture the rich information contained in the conditional distributions of future returns.

One widely adopted way of modeling conditional distributions is to make parametric assump-

tions on the data-generating process. However, these parametric models could still be overly re-

strictive and may not be flexible enough to capture the highly complicated forms of conditional

distributions. Moreover, the large number of predictors could result in a high dimensionality prob-

lem. We obtain conditional distributions of stock returns through quantile regression to overcome

these challenges. We introduce machine learning methods to capture the complicated dependence

of conditional quantiles on a large number of return predictors.

We present our quantile regression with machine learning methods as follows. In Section 2.1,

we introduce the idea of quantile functions and quantile regression. In Section 2.2, we show how

to assemble the estimated quantiles to obtain empirical forecasts of conditional distributions. In

Section 2.3, we introduce the machine learning algorithms considered in this paper.

2.1 Quantile Regression

For a given τ ∈ (0, 1), the conditional quantile function qτ (xi,t) is defined as a function satisfying

Pr (ri,t+1 < qτ (xi,t)|xi,t) = τ . When τ = 0.5, q0.5(xi,t) represents the conditional median of ri,t+1.

One easy way of understanding quantile regression estimation is by replacing the objective

function in the least squares regression with other appropriate loss functions, and then we obtain

estimates of conditional quantiles instead of the conditional mean. For example, if we assume a

linear relation between quantiles and the predictors, i.e., qτ (xi,t) = β⊺
t,τ xi,t, we can estimate the

median of future returns by minimizing the absolute deviation below:

β̂t,0.5 = min
β∈Rp

∑
s∈Tt

Ns∑
i=1

|ri,s+1 − β⊺xi,s|. (3)

Then the predicted median of ri,t+1 is β̂⊺
t,0.5xi,t.

Suppose we are interested in estimating a generic τ -th quantile qt,τ (xi,t) instead of the median.
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That is, we are interested in finding βt,τ such that Pr[ri,t+1 ≤ β⊺
t,τ xi,t|xi,t] = τ , where τ ∈ [0, 1].

This can be achieved by minimizing the following absolute deviation loss (or check loss) function

introduced by Koenker and Bassett (1978):

ρτ (u) = u (τ − 1(u < 0)) . (4)

It is interesting to note that ρτ (·) is τ -specific, i.e., for a different τ , a specific check loss is used for

estimation. The eight check loss functions for τ equally spanning from 0.01 to 0.99 in Figure 3 show

that each objective function puts different weights on the data for the associated τ . Intuitively,

when we are interested in the 15% quantile (the dashed orange curve in Figure 3), the slope is much

steeper in the negative half, indicating smaller observations have more information about this small

quantile than larger observations and should be given more weights in estimation. Similarly, for

larger quantiles, say 85%, the objective function would put more weights on larger observations

than smaller ones (as is shown by the dashed green curve in Figure 3).

Therefore, we could estimate the τ -th quantile by:

β̂t,τ = min
β∈Rp

∑
s∈Tt

{
Ns∑
i=1

ρτ (ri,s+1 − β⊺xi,s)
}

, or equivalently

β̂t,τ = min
β∈Rp

∑
s∈Tt

{
Ns∑
i=1

(ri,s+1 − β⊺xi,s) [τ − 1(ri,s+1 < β⊺xi,s)]
}

,

(5)

and the predicted τ -th quantile of the conditional distribution of ri,t+1 is q̂t,τ (xi,t) = β̂⊺
t,τ xi,t. The

loss functions (4) and(5) are non-differentiable at 0. The simplex method and interior point are

typical methods to minimize check losses.

In the above discussion, we assume a linear quantile function. In general, quantiles could depend

on the predictors xi,t nonlinearly. If we denote qt,τ (xi,t) as a general nonlinear function, then the

τ -th quantile function can be estimated by minimizing the objective function below:
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q̂t,τ (·) = min
q∈F

∑
s∈Tt

{
Ns∑
i=1

ρτ (ri,s+1 − q(xi,s))
}

q̂t,τ (·) = min
q∈F

∑
s∈Tt

{
Ns∑
i=1

(ri,s+1 − q(xi,s)) [τ − 1(ri,s+1 < q(xi,s))]
}

.

(6)

The predicted τ -th quantile of the conditional distribution of ri,t+1 is q̂t,τ (xi,t).

2.2 From Quantiles to Conditional Distributions

Constructing conditional distributions from quantiles entails the inverse probability transforma-

tion. For ri,t+1, denote its conditional cdf as F (ri,t+1|xi,t). The τ -th theoretical quantile of ri,t+1

conditional on xi,t satisfies

τ = Pr [ri,t+1 < qt,τ (xi,t)|xi,t] , i.e., (7)

τ = F (qt,τ (xi,t)|xi,t). (8)

Applying the inverse of the conditional cdf , F −1(·|xi,t), on both sides, we obtain

F −1(τ |xi,t) = qt,τ (xi,t). (9)

By the inversion probability transformation, we know that if {τj}J
j=1 is generated from U[0,1],{

qt,τj (xi,t) ≡ F −1(τj|xi,t)
}J

j=1
are legitimate random samples drawn from the conditional density

f(·|xi,t). Thus for a large J , we can use
{

q̂t,τj (xi,t)
}J

j=1
to construct an empirical version of the

conditional density. We can further use the forecasted empirical density to calculate characteristics

11



such as the probability that the next period return will exceed a given extreme cutoff rc:

Pr [ri,t+1 ≥ rc|xi,t] = 1
J

J∑
j=1

1(q̂t,τj (xi,t) ≥ rc). (10)

Another example is in parallel with the regression mean, E[ri,t+1|xi,t] (i.e., conditional mean

obtained from the least squares regression). Formally, we define the quantile mean (q-mean) as

EQM
t [ri,t+1|xi,t] = 1

J

J∑
j=1

q̂t,τj (xi,t). (11)

We can also define higher-order moments, including variance and skewness, from the predicted

quantiles in a similar fashion. One drawback of random τ is that oftentimes a randomly generated

τj from U[0,1] could be very close to 0 or 1, causing numerical instability in estimation. Hence in

practice, we consider 100 fixed grid points of τj ’s ranging from 0.5% to 99.5%. The validity of using

fixed τ ’s to calculate equations (10) and (11) is theoretically justified in Appendix A.

These quantities calculated from predicted conditional distributions contain much richer in-

formation about future stock returns and provide investors with much richer choices in forming

investment decisions. For example, while investors have been using expected return to sort stocks

when forming long-short portfolios, median or q-mean could be used for the same purpose. The

median is more robust to outliers than the mean, while q-mean in equation (11) aggregates all the

information in all J quantiles. Moreover, conditional probability in equation (10) or quantile in

its own right can help investors identify stocks that are likely to have extreme positive or nega-

tive returns. Stocks with the highest Pr[ri,t=1 ≥ rc|xi,t], for an appropriately chosen rc, could be

potential candidates to long, while stocks with the highest Pr[ri,t=1 ≤ −rc|xi,t] could be potential

candidates to short. Similarly, for a given τ , we could choose stocks with the highest τ -th quantile

to long and the lowest τ -th quantile to short. We could also consider a pair of quantiles (e.g., the

5% and the 95%), where we choose stocks with the highest 95% quantiles to long and those with
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the lowest 5% quantiles to short. We will examine in our empirical analysis whether these new

measures lead to better performances for long-short investing.

2.3 Machine Learning Algorithms

The important paper of Gu et al. (2020) demonstrates the power of sophisticated machine learning

models in capturing nonlinear dependence of expected returns on return predictors. Given that

the relation between conditional distributions and return predictors could be even more compli-

cated, we also consider machine learning methods in our study to accommodate a large number of

predictors xi,t and to capture the potential nonlinear relations between conditional quantiles and

the predictors. As equation (9) indicates, the quantile functions qt,τ (xi,t) uniquely determines the

conditional cdf F (ri,t+1|xi,t). Thus without any parametric restrictions on qt,τ (xi,t), our methods

allow for very flexible shapes of the conditional distributions.

We consider four machine learning algorithms in our analysis. The first two are popular methods

of dimension reduction that have been widely used in the literature to deal with large numbers of

predictors. One is principal component regression (PCR), which exploits the structure of the

covariance matrix of the predictors to reduce dimensionality. The other is Lasso, which is based

on the idea of penalization. We also consider two non-linear algorithms, multilayer perception

neural network and gradient boosting machines (trees). In particular, we consider the three-layer

neural network and LightGBM, a version of the gradient boosting machine. All machine learning

algorithms involve hyperparameters, and different values of hyperparameters could lead to very

different model predictions. Below we first briefly introduce the three machine learning algorithms

and then introduce the Bayesian optimization with Gaussian process for hyperparameter tuning. It

is worth mentioning that for all four machine learning algorithms, for each year from 1987 to 2016,

and each of the τj (j = 1, 2, . . . , 100), we tune the hyperparameters to achieve the best out-of-sample

forecast performance. In total, for each machine learning algorithm, we train 30 × 100 = 3, 000
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models and base our forecasting exercise on these models.

2.3.1 Principal Component Regression

The covariance matrix of the predictors xi,t contains information about their comovements. Prin-

cipal component analysis of the covariance matrix helps select combinations of xi,t that explain

the comovements. By replacing the original predictors xi,t with their principal components in our

quantile regression, we reduce the dimension of the covariates to at most m. Given a specific

τ ∈ (0, 1), for m principal components, the predicted quantile function takes the form

q̂P CR
t,τ (xi,t) = β̂⊺

t,τ (a⊺
1xi,t, . . . , a⊺

mxi,t)⊺, (12)

where as are the principal loadings and β̂t,τ is the vector of coefficients obtained by linear quantile

regression as in equation (5) but with principal components as regressors. The only hyperparameter

of PCR is the number of the principal components m.

2.3.2 Penalized Linear Methods

Belloni and Chernozhukov (2011) propose a uniformly consistent L1-penalized estimator for quantile

regression. Specifically, for a given τ , the penalized coefficients estimator is obtained as follows:

β̂t,τ = min
β∈Rp

1∑
s∈Tt

Ns

∑
s∈Tt

Ns∑
i=1

ρτ (ri,s+1 − β⊺xi,s) + λ
√

τ(1 − τ)∑
s∈Tt

Ns

p∑
k=1

σ̂k|βk|, (13)

where Ns and ri,s+1 have been defined in the previous sections, p is the dimension of the covariates,

σ̂2
k := 1∑

s∈Tt
Ns

∑
s∈Tt

∑Ns
i=1 x2

i,s,k, and xi,s,k is the k-th element of xi,s. The final predicted quantile

function is then

q̂Lasso
t,τ (xi,t) = β̂⊺

t,τ xi,t. (14)
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With the penalty term in equation (13), some components of β̂t,τ will be shrunk to 0. Consequently,

the effective dimension of the covariates could be reduced. The only hyperparameter in quantile

regression with Lasso is λ in equation (13).

2.3.3 Neural Networks

We implement classic multilayer perception (MLP) networks with three hidden layers. In MLP,

each layer contains a fixed number of cells that perform two transformations on the previous cells.

Starting with the input layer (original xi,t), the cells in the first hidden layer (1) combine xi,t

linearly into c
(1)
l ≡ b1 + w(1)xi,t, where b1 and w(1) are parameters and then (2) apply a non-linear

activation function on the linear combination σ(c(1)
l ). The index l ranges from 1 to L, the total

number of cells in the first layer. After the transformation, the output serves as the input to the

second layer, and so forth. In the last layer, after linear combination, instead of applying yet

another activation function, the outputs directly enter the check loss.

2.3.4 Tree-Based Methods

While PCR and Lasso can solve the problem of high-dimensionality, they are still linear models.

To capture the potential nonlinear dependence of conditional quantiles on return predictors, we

consider a tree-based method, Light Gradient Boosting Machine.

Recall that at time t, our goal is to find the best function q(·) in a function space F by

q̂t,τ = min
q∈F

∑
s∈Tt

Ns∑
i=1

ρτ (ri,s+1 − q(xi,s)). (15)

Due to the high-dimensionality of xi,t and the flexibility of q(·), it is very difficult to accomplish

the above minimization in one step. Instead, boosting trees start with a simple although non-

optimal function and iteratively improve this function until reaching a final prediction function

that aggregates the initial one and all the subsequent improvements.
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Specifically, for a given τ , we start by estimating a simple binary tree q̂
[0]
t,τ (xi,t) that minimizes

the quantile loss ρτ (·) based on the original data {ri,t+1, xi,t}t=1,...,T ;i=1,...,Nt . This naive binary

tree, however, certainly cannot make perfect predictions. From this initial tree, we obtain the “τ -

residual”s from all the observations {ri,t+1 − q̂
[0]
t,τ (xi,t)}. These residuals contain information on how

far the naive tree is from optimal. In the next iteration, gradient boosting machine works on the

τ -residuals by building another tree from the derived data {ri,t+1 − q̂
[0]
t,τ (xi,t), xi,t}. This new tree,

denoted as q̂
[1]
t,τ (xi,t), captures the incapability of q̂

[0]
t,τ . Continuing in this fashion for S iterations,

more binary trees are built to exploit the information contained in the original data. Aggregating

all the trees, we obtain the final prediction function as

q̂LightGBM
t,τ (xi,t) =

S∑
s=0

q̂
[s]
t,τ (xi,t), (16)

where S is the number of boosting iterations.

Several improvements and various implementations are developed based on the idea of naive

boosting trees. For example, gradient boosting trees shorten the computing time by approximating

the loss function (the check loss ρτ in our context) with second-order Taylor expansion. XGBoost

employs histogram-based splitting that reduces the number of possible splits of each tree to reduce

computing time. It also adopts more regularizations to control over-fitting. LightGBM is by far the

fastest and stale implementation of gradient boosting trees. It accelerates the computing through

histogram-based sampling, gradient-based one-side sampling, and exclusive feature bundling. For

a detailed discussion of LightGBM, see Ke et al. (2017). Although the descendants of boosting

trees differ in various aspects, their differences are mainly in the technical implementations. In our

paper, we use LightGBM to represent the tree-based method. The hyperparameters we consider

for LightGBM are the learning rate, the maximum depth of a tree, and the minimum number of

observations on a leaf.

For all four machine learning algorithms, we obtain the 100 predicted quantiles for each firm in
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each month from 1987 to 2016 and calculate several interesting summary statistics, including the

tail probabilities of equation (10) and q-mean of equation (11). We then use these quantities to

construct long-short portfolios.

2.3.5 Hyperparameter Tuning

Hyperparameters govern the structure of machine learning models, and different hyperparameters

could lead to very different models. As a result, hyperparameter tuning, i.e., selecting the optimal

hyperparameters to construct models for forecasting purposes, is crucial for the performance of

machine learning models.

In both simulation studies and empirical analysis below, we use nine years of in-sample monthly

data to tune the hyperparameters of all three machine learning algorithms. Specifically, we first fix

a hyperparameter and use the first seven years of data to train the model and get the estimate of

the model parameters. We then use the next two years of data for validation. That is, based on the

model parameters estimated using the first seven years of data, we choose the hyperparameters that

give the best fit using the recent two years of data. Then based on the selected hyperparameters,

we retrain the model using the entire nine years of data. After this exercise, we end up with a

set of hyperparameters as well as the model parameter estimates that jointly determine a machine

learning model that has the best fit for the nine years of in-sample data. We then use this model

to make monthly out-of-sample forecasts of conditional distributions for the next twelve months.

Grid search is the standard approach for hyperparameter tuning. That is, one would search

through the space of the hyperparameters point-by-point and find the values that give the best

out-of-sample fit. Grid search is relatively straightforward for PCR and Lasso, which have only

one hyperparameter (m for PCR and λ for Lasso). For example, when validating PCR, we would

evaluate the model 50 times for each m ∈ {1, 2, . . . , 50} and find the one that gives the best fit.

While grid search would also work for quantile Lasso, we adopt the suggestion by Belloni and

Chernozhukov (2011) to choose the best in-sample hyperparameter λ (see their equation (2.7) for
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explicit computation steps) for computational efficiency.

When the number of hyperparameters increases, however, the computational burden of grid

search increases exponentially, and the tuning process becomes extremely time-consuming. The

main reason is that grid search is, in essence, enumeration. It just blindly searches over the

hyperparameter space without any guidance on the locations that are more likely to contain better

hyperparameter values.

To overcome this challenge, we adopt Bayesian optimization with Gaussian process for hy-

perparameter tuning and apply it to NN3 and the LightGBM model, each of which has three

hyperparameters7. Bayesian optimization, first proposed by Močkus (1975), is an optimization

algorithm that finds the optimal value of a function by iteratively searching through its domain.

Unlike gradient-based optimization algorithms, Bayesian optimization does not require any infor-

mation on derivatives and therefore is more suitable for optimization problems where the objective

functions are not known in closed form.

In the context of tuning hyperparameters, Bergstra et al. (2011), Snoek et al. (2012), and Turner

et al. (2021) have shown that Bayesian optimization offers an effective approach to hyperparameter

tuning, which is essentially an optimization problem. That is, the goal is to choose hyperparameters

that minimize the validation loss8:

min
ξ∈Ξ

ν(ξ), (17)

where ξ represents the hyperparameters, Ξ is the domain of the hyperparameters, and ν represents

the validation loss function. The main challenges we face are that ν is generally not known with

an explicit analytic formula and is computationally expensive to evaluate.

The basic approach of Bayesian optimization is to first assign a prior distribution to the un-

known ν(·) function. Then evaluate ν(·) at a randomly chosen hyperparameter ξ. Based on this new
7Dropout, initial learning rate, and decay for NN3 and learning rate, minimal points on each leaf, and

maximum depth of a tree for LightGBM.
8Bayesian optimization typically finds the maximal; we use minimization for illustrative purposes.
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information, we update the posterior distribution to obtain a posterior distribution using the Bayes

rule. The posterior distribution would provide guidance on where to choose the next hyperparam-

eter for the next-round evaluation. This process will continue until convergence is reached. When

choosing the prior distributions of the (typically unknown) objective function, Gaussian process is

widely used due to its computational convenience.

In our implementation, the prior of ν(·), denoted as ν(0), is assumed to follow a Gaussian

process, with pre-specified mean and covariance structures. Specifically, at any ξ ∈ Ξ, ν(0)(ξ)

follows a Gaussian distribution with constant mean µ ∈ R and for any two points ξ1, ξ2 ∈ Ξ, the

covariance between the two points ν(0)(ξ1) and ν(0)(ξ2) is determined by a Gaussian kernel

Cov (ν(ξ1), ν(ξ2)) ≡ 1
2πσ2 exp

{
−∥ξ1 − ξ2∥2

2σ2

}
, (18)

where ∥·∥2 denotes the Euclidean norm and σ2 is the prior variance parameter.

Once the prior is specified, we randomly sample a point ξ(0) and evaluate ν(ξ(0)). Then the

posterior of ν(·), denoted as ν(1)(·), can be easily updated given the new information obtained from

ν(ξ(0)) and the Gaussian nature of the prior distribution ν(0)(·). Based on the updated informa-

tion, we choose a new hyperparameter ξ(1) that is most likely to offer the smallest out-of-sample

forecasting error. Next, we can obtain a newer posterior ν(2)(·) based on the prior ν(0)(·) and the

evaluation at the two selected hyperparameters ν(ξ(0)) and ν(ξ(1)). We then select a newer hyper-

parameter ξ(2) that is most likely to offer the smallest out-of-sample forecasting error. Continuing

in this fashion, we update the posterior and select the hyperparameters M times. At last, the best

hyperparameter ξopt is the one that gives the minimum value of
{

ν(ξ(0)), ν(ξ(1)), . . . , ν(ξ(M))
}

. We

choose M = 20 in our empirical analysis. Note that in this process, we do not require that ν(·)

is known with an explicit analytic formula. Instead we only require that ν(·) can be evaluated

numerically.

One main advantage of Bayesian optimization is that it requires only a few iterations to converge

19



due to its guided updating nature. For example, if a randomly chosen new hyperparameter ξ leads

to a good fit of the data, then those hyperparameters that exhibit high covariance in the Gaussian

process with ξ are also likely to be good choices and vice versa. An acquisition function precisely

determines the next-round hyperparameters. In our analysis, we use expected improvement as the

acquisition function. We refer interested readers to Shahriari et al. (2015) for details on other

choices of acquisition functions. As a result, the algorithm only needs to search those promising

regions, which greatly enhances the efficiency of hyperparameter tuning. In contrast, grid search,

by completely discarding the information contained in earlier searches and going over the hyper-

parameter domain blindly, has to evaluate the objective function unnecessarily many times. This

makes grid search practically infeasible when the number of hyperparameters is large.

3 Simulation

This section presents our simulation analysis to investigate the efficacy of the four machine learning

models for quantile regression in forecasting conditional distributions. Our covariates generating

process is similar to that of Gu et al. (2020) but we consider conditional mean functions that exhibit

both linear and nonlinear dependence on return predictors. The linear case has independently

and identically distributed (i.i.d.) asymmetric random errors, whereas the nonlinear case has

heterogeneous asymmetric random errors.

In the following, we first introduce the simulation setup, including the predictors and the return

generating process in Section 3.1. We then present the forecasting results from the four machine

learning methods in Section 3.2.
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3.1 Return Generating Processes

In our simulation, we consider a balanced panel of N firms with T months of observations. For

time t ∈ {1, . . . , T} and firm i ∈ {1, . . . , N}, stock returns are obtained from the following data-

generating process:

ri,t+1 = g∗(xi,t) + β⊺
t+1xi,t + εi,t+1,

βt+1
iid∼ N

(
0, σ2I3

)
,

εi,t+1 is the random error to be specified,

(19)

where xi,t is a 3 × 1 vector representing the return predictors, g∗(xi,t) is the conditional mean for

firm i at time t, βt+1 is a 3 × 1 vector independent of xi,t, β⊺
t+1xi,t represents the time effects,

and I3 is a 3 × 3 identity matrix. For each t, we actually simulate a 50-dimensional vector of

predictors to represent the high dimensionality in the real data. However, instead of using all 50

predictors to generate the returns, we choose three of them, treating the remaining ones as spurious

factors. Therefore, in the return-generating process, only three predictors are effective, while in

our forecasting exercises, we use all 50 predictors as the input of the machine learning models.

The return predictors are generated according to the following data-generating process.9 The

k-th element of xi,t is simulated as:

xi,t,k = 2
N + 1rankςi,t,k − 1, (20)

where
ςi,t,k = ρkςi,t−1,k + ϵi,t,k,

ϵi,t,k
iid∼ N

(
0, 1 − ρ2

k

)
, where ρk

iid∼ U[0.9,1].

(21)

Also note in equation (21), for each k ∈ {1, 2, . . . , 50}, we let ρk’s be i.i.d. and ϵi,t,k be i.i.d. for all

9We rank the predictors for each t, so the transformed predictors are homogeneous across times, and their
values are always between −1 and 1.
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i and t. We set the initial values of ςi,t,k to be zero but discard the first 180 months of observations

as burn-in.

We consider two functional forms of g∗(·):

g∗(xi,t) = 0.3 + 0.3xi,t,1 + 0.2xi,t,2 + wtxi,t,3, (22a)

g∗(xi,t) = 1 + 0.4xi,t,1 + 2xi,t,1x2
i,t,2, (22b)

where wt represents a market-wide effect and follows an AR(1) process:,

wt = ρwt−1 + ut, ut
iid∼ N

(
0, 1 − ρ2

)
, for ρ = 0.9. (23)

For the first setup (22a), which assumes a linear relationship between expected return and

the covariates, we adopt a skewed t-distribution error term εi,t+1 ∼ t5(0, σ2
ε), where σε = 0.05 is

the scale parameter. The second setup (22b) assumes a nonlinear relation between the expected

return and the covariates, and we adopt a random error that follows heterogeneous one-parameter

asymmetric Laplacian distributions (ALD). That is, εi,t+1 ∼ ALD(κi), where κi ∼ N (1, 0.15).

ALD is known for its asymmetric shape with heavy tails (see Linden (2001) for example). For

the one-parameter case as in our simulation, κ > 0 is the asymmetry parameter. − < κ < 1

results in an ALD with a heavy right tail, and κ > 1 results in an ALD with a heavy left tail.

Another interesting feature about ALD is that unless for κ = 1, which represents the symmetric

distribution, the mean of ALD is not 0. In our simulation, we guarantee that the simulated κi’s

are all greater than 0, and all the error terms are de-meaned. The second setup is more difficult

to estimate because of the nonlinear relationship and the more complicated structure of the noise

terms.

For each setup, we simulate 15 years (180 months) of data, with 200 firms in each month,

totaling 36,000 observations. At the beginning of each year, we use the past nine years of data to
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completely train a machine learning model: the first seven years for model training and the next

two years for model validation. Then we use the trained model to make monthly out-of-sample

forecasts of conditional return distributions for the next twelve months. Effectively, we have only

six years of data with 14,400 firm-level observations for out-of-sample evaluation. Whereas Gu et al.

(2020) focuses on conditional mean prediction, we are more interested in forecasting conditional

distributions.

Table 1 reports the decomposition of the total variations of the simulated returns for both the

linear and nonlinear models. We find that the simulated returns of the nonlinear model are much

more volatile than that of the linear model. For example, the total variance of the simulated returns

in the nonlinear model (2.6470) is about ten times that in the linear model (0.2671). The biggest

contribution to such a huge difference is the firm-specific risk generated by the extreme values of

the ALD error term. The firm-specific risk accounts for about 80% (90%) of the total variance

(standard deviation) of the simulated returns in the nonlinear model. While the variance of the

conditional mean and the time effect in the nonlinear model are larger than that in the linear model,

their contributions to the total variations of the simulated returns are much smaller. In general,

it should be much more difficult to forecast the conditional distributions of the nonlinear model,

which has a much more complicated model structure, more time variations in model coefficients,

and much higher total and firm-specific risks.

3.2 Results

We first examine model performance by comparing certain conditional quantiles (at 20%, 50%,

and 80%) of the true conditional distributions with the corresponding ones predicted by the three

machine learning methods. For a given set of predictors, the conditional mean of the true dis-

tribution is known. In order to obtain the true conditional quantiles, we conduct a Monte Carlo

simulation of size 500 from the true return generating process to capture the time-varying effects
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and firm-specific risks.

Figure 4 compares the true 20%, 50%, and 80% quantiles obtained from Monte Carlo simulation

with the quantiles predicted by the fully trained PCR, Lasso, NN3, and LightGBM models for the

linear setup in (22a). The horizontal axis is the true quantile, and the vertical axis is the forecasted

quantile. Each dot represents a firm-time observation. The red lines are at 45 degrees and pass the

origin. From top to bottom, we report the results of PCR, Lasso, NN3, and LightGBM, respectively.

We note that Lasso, NN3, and LightGBM can accurately predict the true quantiles for the linear

case with relatively small return variation. In contrast, PCR fails to accurately predict the true

quantiles. This is mainly because the simulation setup does not impose any specific structures on

the covariance matrix of the predictors, which makes it hard to take advantage of the power of

PCR.

Figure 5 compares the true 20%, 50%, and 80% quantiles obtained from Monte Carlo simulation

with the quantiles predicted by the three fully trained machine learning models for the nonlinear

setup in (22b). From top to bottom, we report the results of PCR, Lasso, NN3, and LightGBM,

respectively. It is easily seen that LightGBM produces the closest prediction among the three.

Although the band is wider than that in Figures 4j, 4k, and 4l, the LightGBM predictions still

closely match the truth. The Lasso and NN3 predictions capture the trend but with wider bands.

They both fail at lower and higher ranks of quantiles. For example, the Lasso prediction tails are

much shorter than those of the true distributions, suggesting Lasso misses the information in tails

of returns. PCR predictions is the worst among the four, and can only reveal the general location

of each quantile. Given the more complicated data-generating process in equation (22b), the above

results illustrate the power of LightGBM in capturing highly nonlinear and complicated patterns

in noisy data.

Next, we compare the true conditional distributions of returns with the conditional distributions

predicted by the three machine learning methods through quantile regression. Out of the 14,400

out-of-sample observations, we randomly select three firm-time-specific conditional distributions.

24



Given the set of predictors of a chosen firm, we obtain the true distributions through Monte Carlo

simulation from the return-generating processes and the predicted conditional distributions through

quantile regression estimations for each machine learning method.

Figure 6 compares the three randomly selected firm-time specific true conditional densities with

the corresponding predicted conditional densities of each machine learning method for the linear

setup in (22a). From top to bottom, we report the results of PCR, Lasso, NN3, and LightGBM. In

each subplot, the gray histogram indicates the simulated true density, while the yellow histogram

shows the predicted density. Similar to Figure 4, Lasso, NN3, and LightGBM can accurately predict

the conditional densities, while PCR fails to do so in this simplified linear setting.

Figure 7 provides similar results on density comparisons for the nonlinear setup in (22b). Con-

sistent with the results on quantile predictions, NN3 and LightGBM can accurately predict the

true conditional distributions of the three randomly selected firms. While Lasso and PCR have

reasonable performance for one of the firms, they fail badly for the others. In the results not shown

here, we have compared many more firm-time observations and found that LightGBM consistently

provides excellent predictions while the other two methods work well only for a small portion of

the firms. These results further demonstrate the superiority of the gradient tree-based method in

capturing the complicated patterns in the data.

In summary, our simulation results show that NN3 and LightGBM produce the most consistent

and robust performances in predicting both quantiles and the whole conditional distributions for

relatively simple as well as highly complex return-generating processes. However, even though

NN3 shows similar performance to LightGBM in our simulation studies, it took 30 times more

computing time, which renders full convergence of the algorithm nonfeasible in empirical analysis.

As we present in the real data application, even allowed for much more computing time than

LightGBM, NN3 can hardly beat LightGBM. While Lasso has similar performances for the linear

case (22a), its performance deteriorates significantly for the nonlinear case. PCR has the worst

performance among the three models for both linear and nonlinear cases, partly due to the lack
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of structure in the covariance matrix in the simulation setup. We include all four methods in our

empirical analysis for comparison.

4 Empirical Analysis

In this section, we apply the four machine learning methods for quantile regression to forecast the

conditional distributions of returns of individual stocks listed in the U.S. stock market. We first

introduce the data used in our empirical analysis in Section 4.1, which is very similar to that used

in Gu et al. (2020). We then discuss the out-of-sample performance of our methods in predicting

realized returns and conditional distributions in Section 4.2. Finally, we examine the performance

of long-short investment portfolios constructed based on distributional information in Section 4.3.

4.1 Data Description

Our empirical analysis focuses on the monthly returns of stocks listed on the NYSE, AMEX, and

NASDAQ between January 1978 and December 2016. With the addition of NASDAQ firms after

1971, the number of firms changed dramatically in 1973. We decide to start our sample in 1978,

leaving 60 months for the market to stabilize.

Since we require nine years of data for model training and validation, we can make out-of-sample

forecasts only for the years between 1987 and 2016. The forecasting sample contains 17,947 firms

with 1,809,418 firm-year-month observations. At the beginning of 1987, using a model trained

between 1978 and 1984 and validated between 1985 and 1986, we make monthly forecasts of the

conditional distributions of stock returns for each month in 1987. That is, for each month and

each firm, we predict the corresponding 100 quantiles of the returns for 100 equally spaced grid

points ranging from τ = 0.5% to τ = 99.5%. We repeat the process one year at a time until 2016,

the final year of the sample. We report our tuned optimal hyperparameters for all the quantile
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models in all the years in Appendix B. For comparison purposes, we also make monthly forecasts

of expected stock returns following the same training scheme, except that the machine learning

models are trained and validated with the least-squares loss.

While we adopt almost the same set of firm characteristics of Green et al. (2017) and Gu et al.

(2020) and macroeconomic variables of Goyal and Welch (2008) as return predictors, several im-

portant differences exist in our analysis. First, we exclude the cross-sectional premium in Goyal

and Welch (2008) since it contains too many missing values, although we still keep market cap-

italization, long-term yield, risk-free rate, inflation, and high-yield bond yield as macroeconomic

variables. Second, we drop the interactions between firm characteristics and macroeconomic vari-

ables to avoid over-fitting. Finally, we exclude firms from the financial industry (60 ≤SIC≤ 67)

and convert the two-digit SIC industry classification to Fama-French 10 industry classification to

mitigate the sparsity of the industry index matrix. Following Gu et al. (2020), all the remaining

return predictors have been standardized through rank transformation. For detailed construction

of the security-specific predictors, see Green et al. (2017) and Gu et al. (2020).

4.2 Conditional Return Distributions

In this section, we first examine the ability of the four machine learning methods to capture the

central tendency of future stock returns. Specifically, we use regression mean, median, and q-

mean (the average of the 100 imputed quantiles) of each model predicted by each machine learning

algorithm to forecast realized returns and report the summary statistics of the forecasting errors in

Table 2. We denote |ri,t+1−r̂i,t+1| as the absolute forecast error, where r̂QM , r̂0.5, and r̂reg represent

predictions made by q-mean, median, and regression mean, respectively. The summary statistics of

the absolute forecast errors clearly show that for each machine learning method, median, q-mean,

and regression mean have similar abilities in forecasting realized returns. Therefore, the advantage

of quantile regression does not seem to be reflected in forecasting the center of return distributions.
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We then evaluate the performance of the machine learning methods in forecasting the condi-

tional distributions of stock returns. Diebold et al. (1998) propose to evaluate density forecasts

based on the idea of generalized residuals introduced in Rosenblatt (1952). For each firm i, the con-

ditional cdf of stock returns given predictors xi,t at time t + 1, F̂ (ri,t+1|xi,t), is called a generalized

residual of the conditional density. According to Rosenblatt (1952) and Diebold et al. (1998), if the

forecasted conditional density F̂ (·|xi,t) captures the true return generating process, the generalized

residuals, F̂ (ri,t+1|xi,t), t = 0, . . . , T − 1, should follow i.i.d. U[0,1]. Different methods have been

developed to evaluate density forecasts by testing the hypothesis of i.i.d. U[0,1].

The well-known Kolmogorov-Smirnov (KS) test measures the distance between the cdfs of two

random variables. Under the null hypothesis, the two cdfs should be the same, implying a small

KS distance. In our case, the KS distance is between the firm-level empirical distribution of the

generalized residuals and the U[0,1]. Berkowitz (2001) points out several disadvantages of the KS

test and proposes to transform the generalized residuals with the inverse cdf of the standard normal

distribution. Under the null hypothesis, the transformed generalized residuals should follow the

standard normal distribution, which can be tested using the Shapiro normality test.

While the above two tests mainly focus on testing the shape property of the cdf of the gener-

alized residuals, Berkowitz (2001) develop a likelihood ratio (LR) test that jointly tests the serial

dependence and the shape of the generalized residuals.10 Whereas the shape property measures

whether a given model captures the true conditional density at each t, the serial independence mea-

sures whether the predicted conditional distributions fully absorb the dynamic properties of the

data-generating processes. Specifically, the LR test assumes the transformed generalized residuals

follow an AR(1) process and tests jointly whether the AR(1) coefficient is zero and whether the

error term follows the standard normal distribution. We apply all three tests (KS, Shapiro, and

LR) in our empirical analysis for a complete discussion.
10Hong and Li (2005) develop nonparametric tests that jointly test whether the generalized residuals follow

the uniform distribution and are independently distributed.
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Table 3 reports the summary statistics of the p-values of the KS, Shapiro, and LR tests. Large

p-values suggest that we do not have enough evidence to reject the null hypothesis that the ma-

chine learning methods can capture the conditional distributions of returns. Consistent with our

simulation evidence, all three tests show that LightGBM can better capture complex conditional

distributions than the other two methods. For example, LightGBM has higher median and mean

p-values for all three tests than NN3, PCR, and Lasso: the median and mean p-values of the LR

tests for LightGBM are 0.3003 and 0.3623, respectively, followed by 0.2331 and 0.3216 for NN3,

0.2018 and 0.3044 for PCR, and 0.1272 and 0.2525 for Lasso. Moreover, at least 80% of the firms

under LightGBM have p-values for all three tests greater than 5%, suggesting that LightGBM can

accurately forecast the conditional distributions of 80% of the firms in our sample. The proportion

lowers to about 70%, 70%, and 60% for NN3, PCR, and Lasso, respectively.

4.3 Long-Short Portfolios

The above analysis confirms that the machine learning methods, particularly the LightGBM model,

can forecast the conditional distributions of stock returns for most firms in our sample accurately.

In this section, we examine whether conditional distributions offer additional information beyond

expected returns in forming long-short portfolios for investment purposes. Although the forecast is

implemented annually, we rebalance at a monthly frequency to construct long and short portfolios.

We form decile portfolios to exercise long-short investing.

4.3.1 Portfolios Sorted on q-Mean, Median, and Mean

In addition to the regression mean (i.e., expected return), which has been widely used as a sorting

variable in long-short investing, we also use q-mean, constructed from the forecasted conditional

distributions as in equation (11), and median to sort stocks into long and short portfolios. Figure 8

reports the cumulative returns of the long and short portfolios based on the three sorting variables
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for the four machine learning methods from 1987 to 2016. From top to bottom, the four panels

represent the results for PCR, Lasso, NN3, and LightGBM, respectively. The solid lines represent

the cumulative returns of the long portfolios. In contrast, the dashed lines represent the short

portfolios. Different colors represent the results for the three sorting variables under each model.

One of the most consistent results in Figure 8 is that under all machine learning models, the

median leads to better results in long-short investing than the regression mean. Median-sorted

cumulative long-short returns over the 30 years under PCR, Lasso, NN3, and LightGBM are 474%,

828%, 739%, and 1036%, respectively, while the corresponding results for regression mean are -45%,

68%, 113%, and 360%, respectively. The Median, which is more robust to outliers than the mean,

could lower the risk of in-sample fitting and thus leads to better out-of-sample performance. In

contrast, one of the reasons that regression means under PCR leads to negative long-short returns

could be due to the incompetency of linear methods since we do not include explicit interactions

between return predictors as in Gu et al. (2020). Another reason for the poor performance of

PCR is due to the rank transformation, which hinders the method from successfully extracting

the potential variance-covariance structure from the original predictors. Although the transformed

data work well in Gu et al. (2020), our samples have different coverages, as discussed in Section

4.1.

Figure 8 also shows that q-mean under LighGBM leads to the best results in long-short investing

with a cumulative return of 1970% over the 30 years, which is significantly higher than that of all

other sorting variables under all four machine learning methods. We defer the discussion of the

superior performance of LightGBM q-mean to the end of Section 4, after presenting other metrics

of portfolio performance.

Table 5 reports the annualized Sharpe ratios of the cumulative long-short portfolios constructed

using q-mean, median, and regression mean. Although q-mean does not lead to higher cumulative

long-short returns than the median under PCR and Lasso, Table 5 shows that q-mean leads to

higher Sharpe ratios than all other sorting variables under all machine learning models. Consistent
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with previous results, the regression mean has the lowest Sharpe ratios among the three sorting

variables.

Figure 9 reports the average monthly returns of the decile portfolios sorted by q-mean, median,

and regression mean. It is interesting to see that the average monthly returns of the decile portfolios

sorted by q-mean and median exhibit a clear monotonic pattern, from the lowest to the highest,

although the return spread is generally much higher for q-mean under the LightGBM model. In

contrast, the average monthly returns of the decile portfolios sorted by regression mean do not

exhibit a clear monotonic pattern, and the return spreads are not as significant either.

The above results suggest that conditional distributions contain much richer information than

regression means about future stock returns. Moreover, consistent with simulation results, Light-

GBM has the best performance, given its flexibility in capturing the potential nonlinear patterns

of the returns for given predictors.

4.3.2 Portfolios Sorted on Conditional Probabilities and Quantiles

To take full advantage of the information contained in conditional distributions, we consider three

additional sorting variables for long-short portfolios. First, given a cutoff rc ≥ 0, we select stocks

with the highest Pr[ri,t+1 ≥ rc|xi,t] to long, and stocks with the highest Pr[ri,t+1 ≤ −rc|xi,t] to

short. The latter probability is defined similarly as in equation (10). Second, for a given τj , we

choose stocks with the highest q̂t,τj (xi,t) to long and the lowest q̂t,τj (xi,t) to short. Finally, we sort

stocks with pairs of quantiles. For τj ∈ {0.5%, . . . , 49.5%}, we select firms into the short (and long)

portfolios when their τj (and 1 − τj) quantiles are the lowest (and highest). For example, we short

stocks with the lowest 0.05% quantiles and long stocks with the highest 99.5% quantiles). When we

face ties in firms sorted by the above three variables, we prefer firms with higher empirical skewness

estimated from the 100 quantiles q̂t,τj (xi,t).

Figures 10 and 11 report the cumulative returns and annualized Sharpe ratios of the long-short

portfolios sorted by the above three measures. For comparison purposes, we also report the same
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information for long-short returns sorted by q-mean, median, and regression mean. When the

sorting variable is conditional probabilities Pr[ri,t+1 ≥ rc|xi,t] and Pr[ri,t+1 ≤ −rc|xi,t] (as in the

left panels), the horizontal axis represents the cutoff level rc, which ranges from 0 to 10%, with

an increment of 0.2%, i.e., we form 50 probability-based long-short portfolios. When the sorting

variable is a single conditional quantile q̂τj ,t(xi,t) (as in the middle panels), the horizontal axis shows

the 100 grid points τj ∈ {0.5%, . . . , 99.5%}. When the sorting variable is a pair of quantiles (as in

the right panels), the horizontal axis represents the smaller grid points τj ∈ {0.5%, . . . , 49.5%}.

When we sort stocks using conditional probabilities, as the cutoff value rc increases, the long

and short portfolios will select stocks that are more likely to have extreme positive and negative

returns. If our machine learning methods can accurately forecast conditional probabilities, the

returns of their long-short portfolios should be an increasing function of rc. The left panels of

Figure 10 confirm this pattern for LightGBM and Lasso, whose cumulative long-short returns are

monotonically increasing in rc. Although the long-short returns of PCR and NN3 do not exhibit a

clear monotonic relationship with rc, the left panels of Figure 11 show that the Shape ratios of the

four machine learning methods generally increase with rc.

One interesting observation is that for portfolios sorted on single quantiles when τj is greater

than 50%, the cumulative long-short returns and the Sharpe ratios start to decline (see the middle

panel of Figure 10). This could be due to inaccurate predictions of quantiles for large τj ’s. As

noted in Section 1, stock returns tend to be right-skewed, resulting in longer right tails. The sparse

observations on the right tail make the predictions more volatile. Using pairs of quantiles partly

resolves this drawback, which leads to more stable long-short returns and Sharpe ratios, as is shown

in the right panels of Figure 11.

The last observation we make is specific to the neural network. Both the cumulative return and

Sharpe ratio exhibit fluctuations around the regression mean. More often than not, the alternative

sorting variables provide better returns and Sharpe ratios than regression means. However, it is

hard to conclude that such superior performance is robust. One explanation is that due to the
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overlong training time11, we stop the algorithm far beyond its convergence. We still provide the

results for completeness of discussion, even though it can provide only limited results.

In general, the above three sorting variables (conditional probabilities, single quantiles, and pairs

of quantiles) lead to higher long-short returns and Sharpe ratios than regression mean, highlighting

the incremental information contained in conditional distributions beyond conditional means. As

a result, LightGBM generally has higher long-short returns and Sharpe ratios for the three sorting

variables. Moreover, q-mean under LightGBM has the highest long-short returns and Sharpe ratios

among all the sorting variables and machine learning methods we consider. We investigate possible

explanations in the following section.

4.3.3 Advantages of Sorting Using q-Mean

One of the most intriguing findings from the above analysis is that q-mean under the LightGBM

model leads to much higher cumulative returns and Sharpe ratios for long-short investing than all

the other sorting variables under all four machine learning methods. Below we provide a more

in-depth analysis of the advantages of q-mean as a sorting variable.

For simplicity, we consider long-short portfolios sorted by the average of two conditional quan-

tiles obtained from the empirical prediction. Suppose we have τ1 = 11.5% and τ2 = 88.5%, for

each stock i, we can compute q̂t,τ1(xi,t) and q̂t,τ2(xi,t) and sort stocks into long and short portfo-

lios by [q̂t,τ1(xi,t) + q̂t,τ2(xi,t)] /2. In Figure 12, the main plot shows the distribution of q̂t,τ1(xi,t)

(orange) and q̂t,τ2(xi,t) (gray), and the subplot on the upper right corner provides the distribution

of [q̂t,τ1(xi,t) + q̂t,τ2(xi,t)] /2 (purple).

Suppose we select firms with top 1% (we use 1% instead of 10% to highlight the distinct regions

in Figure 12) of [q̂t,τ1(xi,t) + q̂t,τ2(xi,t)] /2 to long and bottom 1% of [q̂t,τ1(xi,t) + q̂t,τ2(xi,t)] /2 to

short. In Figure 12, we first highlight the top and bottom 1% regions in the distribution of

[q̂t,τ1(xi,t) + q̂t,τ2(xi,t)] /2. Then we use two green arrows to show the regions in the distributions
11Longer than one month on an Nvidia H100 GPU for the 3,000 models.
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of q̂t,τ1(xi,t) and q̂t,τ2(xi,t), from which the top 1% portfolio firms come. Similarly, we use two

red arrows to indicate the regions in the distributions of q̂t,τ1(xi,t) and q̂t,τ2(xi,t), from which the

bottom 1% portfolio firms come.

It is interesting to see that the top 1% firms typically have extremely high q̂t,τ2(xi,t) and middle-

range q̂t,τ1(xi,t). Firms with high q̂t,τ2(xi,t) have the highest 88.5% quantiles among all the firms

and therefore are more likely to achieve extreme positive returns. On the other hand, firms with

middle-range q̂t,τ1(xi,t) do not have the lowest 11.5% quantiles and are not likely to have extreme

negative returns. As a result, the top 1% firms in the long portfolio are more likely to have extreme

positive returns but are unlikely to have extreme negative returns. These firms are good choices to

long because they have high upside potential but limited downside risk.

Similarly, the bottom 1% firms typically have extremely low q̂t,τ1(xi,t) and low q̂t,τ2(xi,t). Firms

with low q̂t,τ1(xi,t) have the lowest 11.5% quantiles among all the firms and therefore are more

likely to achieve extreme negative returns. On the other hand, firms with low q̂t,τ2(xi,t) have the

lowest 88.5% quantiles and are not likely to have extreme positive returns. As a result, the bottom

1% firms in the short portfolio are more likely to have extreme negative returns but are unlikely

to have extreme positive returns. These firms are good choices to short because they have high

downside risk but limited upside potential.

Therefore, averaging over q̂t,τ1(xi,t) and q̂t,τ2(xi,t) provides a convenient way to select stocks

with high upside potential and limited downside risk to long as well as stocks with high downside

risk and limited upside potential to short. The result will be even more robust if the averaging

is done over the 100 quantiles, which can potentially diversify away the risks in the averaging of

individual pairs of quantiles.
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5 Conclusion

We extend the empirical asset pricing literature by providing a cross-sectional analysis of con-

ditional stock returns through the lens of conditional quantiles and distributions. Compared to

expected returns, conditional distributions contain much richer information for formulating invest-

ment decisions. We develop machine learning methods to forecast the conditional quantiles of stock

returns in the cross section through quantile regression. Machine learning can capture potential

nonlinear dependence of the conditional quantiles on a large number of return predictors. We adopt

Bayesian optimization with Gaussian process to improve the efficiency of hyperparameter tuning

in machine learning. Extensive simulation studies show that our methods can accurately forecast

complicated data-generating processes’ conditional quantiles and distributions. Empirical results

from the U.S. data show that measures constructed from conditional distributions can identify

stocks with extreme positive or negative returns and achieve superior performance in long-short

investing.

35



References
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Figures

(a) Unconditional skewness
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Figure 1: Skewness and Kurtosis of Individual Stock Returns

This figure reports the histograms of the skewness and kurtosis of individual stock returns of the 17,947 firms
considered in our sample between January 1978 and December 2016. The vertical axes are in percentage. The two
vertical dotted lines in each panel indicate the minimum and maximum values.
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(a) Median of left-skewed return
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(b) Median of right-skewed return
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(c) 95% quantile of left-skewed return
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(d) 95% quantile of right-skewd return
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(e) 5% quantile of left-skewed return
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(f) 5% quantile of right-skewed return
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Figure 2: Left- and Right-skewed Stock Return Distributions

This figure provides a comparison of left- and right-skewed return distributions. The left column contains
the probability density of the left-skewed distribution, which follows −Gamma(5, 1)+5. The right column
contains the probability density of the right-skewed distribution, which follows Gamma(5, 1) − 5. The
vertical lines in the top, middle, and bottom subplots are the medians, the 95% quantiles, and the 5%
quantiles calculated from Monte Carlo samples, respectively.
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Figure 3: Check Loss Functions for Quantile Regression

The figure reports the check loss functions ρτ (u) = u(τ − 1(u ≤ 0)) used in quantile regression for eight
different values of τ equally spaced between 0.01 and 0.99.
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Figure 8: Cumulative Returns of Long and Short Portfolios

The figure provides time series plots of the cumulative returns of the long and short portfolios sorted by q-mean,
median, and regression mean under PCR, Lasso, and LightGBM, from top to bottom, respectively. The solid
curves represent the cumulative returns of the long portfolios, while the dashed curves represent that of the short
portfolios. In each subplot, the violet, orange, and black curves represent the portfolios sorted by q-mean, median,
and regression mean, respectively.
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Figure 9: Average Monthly Returns of Decile Portfolios

The figure provides time-series averages of monthly returns of decile portfolios sorted by q-mean, median, and
regression mean under PCR, Lasso, and LightGBM, from left to right, respectively. In each subplot, the horizontal
axes represent the rank of the decile portfolios from 1 (short) to 10 (long); the common vertical axis represents the
predicted average monthly returns; and the violet, orange, and black curves represent the average monthly returns
for decile portfolios sorted by q-mean, median, and regression mean, respectively.
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Figure 10: Cumulative Returns of Long-Short Portfolios Sorted by Conditional
Probabilities and Conditional Quantiles

This figure reports cumulative returns of long-short portfolios sorted by conditional probabilities and conditional
quantiles for PCR, Lasso, and LightGBM, from top to bottom, respectively. In the left column, for a given rc,
we select stocks with the highest Pr[ri,t+1 ≥ rc|xi,t] to long, and stocks with the highest Pr[ri,t+1 ≤ −rc|xi,t] to
short; in the middle column, for a given τj , we choose stocks with the highest q̂τj ,t(xi,t) to long and the lowest
q̂τj ,t(xi,t) to short; and in the right column, for τlj

∈ {0.5%, . . . , 49.5%}, we select firms into the short (and
long) portfolios when their τlj

(and 1-τj) quantiles are the lowest (and highest). For comparison, we also report
cumulative long-short returns for portfolios sorted by q-mean, median, and regression mean, represented by the
violet, orange, and black lines, respectively.
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Figure 11: Sharpe Ratios of Long-Short Portfolios Sorted by Conditional
Probabilities and Conditional Quantiles

This figure reports annualized Sharpe ratios of long-short portfolios sorted by conditional probabilities and condi-
tional quantiles for PCR, Lasso, and LightGBM, from top to bottom, respectively. In the left column, for a given
rc, we select stocks with the highest Pr[ri,t+1 ≥ rc|xi,t] to long, and stocks with the highest Pr[ri,t+1 ≤ −rc|xi,t]
to short; in the middle column, for a given τj , we choose stocks with the highest q̂τj ,t(xi,t) to long and the lowest
q̂τj ,t(xi,t) to short; and in the right column, for τlj

∈ {0.5%, . . . , 49.5%}, we select firms into the short (and long)
portfolios when their τlj

(and 1-τj) quantiles are the lowest (and highest). For comparison, we also report the
Sharpe ratios of long-short portfolios sorted by q-mean, median, and regression mean, represented by the violet,
orange, and black lines, respectively.
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Figure 12: Advantages of q-Mean for Long-Short Investing

The figure provides an illustration of the advantages of q-mean as a sorting variable for long-short investing.
Given τ1 = 11.5% and τ2 = 88.5%, for each stock i, we obtain q̂τ1,t(xi,t) and q̂τ2,t(xi,t). We sort stocks using
[q̂τ1,t(xi,t) + q̂τ2,t(xi,t)] /2 and choose the top (bottom) 1% of firms to long (short). The histograms of q̂τ1,t(xi,t),
q̂τ2,t(xi,t), and [q̂τ1,t(xi,t) + q̂τ2,t(xi,t)] /2 are colored as orange, gray, and purple, respectively. The green (red)
region of the purple distribution represent the top (bottom) 1% of the firms sorted by [q̂τ1,t(xi,t) + q̂τ2,t(xi,t)] /2.
The green regions in the orange and gray distributions suggest that the top 1% firms have high q̂τ2,t(xi,t) and
middle-level q̂τ1,t(xi,t). These firms, which are likely to have extreme positive returns but unlikely to have negative
returns, are good candidates to long. The red regions in the orange and gray distributions suggest that the bottom
1% firms have low q̂τ1,t(xi,t) and low q̂τ2,t(xi,t). These firms, which are likely to have extreme negatives returns
but unlikely to have positive returns, are good candidates to short. Therefore, q-mean can identify stocks with high
upside potential but limited downside risk to long and stocks with high downside risk but limited upside potential
to short.
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Tables

Table 1: Decomposition of Variations of Simulated Returns

This table provides a decomposition analysis of the variations of the simulated
returns from model (22a): g∗(xit) = 0.3+0.3xit1 +0.2xit2 +wtxit3 (left panel)
and model (22a): g∗(xit) = 1 + 0.4xit1 + 2xit1x2

it2 (right panel) Variation
is measured in both standard deviation (as in the column named “std”) and
variance (as in the column named “variance”). From top to bottom, the four
rows represent the conditional mean function, the time effect, the residual noise,
and the simulated returns, respectively.

Model (22a) Model (22b)
mean std variance mean std variance

g⋆ 0.30 0.51 0.26 0.99 0.72 0.52
β⊺v 0.00 0.05 0.00 0.00 0.20 0.04
ϵ -0.00 0.06 0.00 0.00 1.45 2.10
ri,t+1 0.30 0.52 0.27 0.99 1.63 2.65

Table 2: Prediction Accuracy of Realized Returns

This table compares the accuracy of regression mean, median, and quantile mean in predicting
future realized returns of the 17,947 firms listed on NYSE, AMEX, and NASDAQ from 1987 to
2016 under PCR, Lasso, and LightGBM, from top to bottom, respectively. Rows with |r − r̂QM |
provide summary information of the absolute prediction errors of quantile mean. Rows with
|r − r̂0.5| provide summary information of the absolute prediction errors of median. Rows with
|r − r̂reg | provide summary information of the absolute prediction errors of regression mean.

ML source min Q1 median Q3 max mean

PCR
|r − r̂QM | 0.00 0.03 0.08 0.16 18.99 0.12
|r − r̂0.5| 0.00 0.03 0.08 0.15 19.01 0.12
|r − r̂reg| 0.00 0.03 0.08 0.16 19.00 0.12

Lasso
|r − r̂QM | 0.00 0.04 0.08 0.16 18.98 0.12
|r − r̂0.5| 0.00 0.04 0.08 0.15 19.01 0.12
|r − r̂reg| 0.00 0.03 0.08 0.16 18.99 0.12

NeuralNet
|r − r̂QM | 0.00 0.03 0.08 0.16 19.00 0.13
|r − r̂0.5| 0.00 0.03 0.08 0.16 19.02 0.13
|r − r̂reg| 0.00 0.03 0.08 0.16 19.02 0.12

LightGBM
|r − r̂QM | 0.00 0.03 0.08 0.15 18.85 0.12
|r − r̂0.5| 0.00 0.03 0.08 0.15 19.00 0.12
|r − r̂reg| 0.00 0.03 0.08 0.16 18.99 0.12
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Table 3: Evaluation of Conditional Density Forecasts

This table reports the evaluations of the conditional density forecasts using the Kolmogorov-Smirnov (KS)
test, the Shapiro normality test, and the Berkowitz (2001) likelihood ratio (LR) test for PCR, Lasso, and
LightGBM, from top to bottom, respectively. The last column, denoted as P (> 0.05), reports the proportion
of firm-time observations that pass the corresponding test at the 5% significance level, i.e. p > 0.05

ML test min Q1 median Q3 max mean P (> 0.05)

PCR
KS 0.00 0.07 0.23 0.52 1.00 0.31 0.79
Shapiro 0.00 0.07 0.25 0.52 1.00 0.32 0.80
LR 0.00 0.03 0.20 0.53 1.00 0.30 0.70

Lasso
KS 0.00 0.03 0.17 0.46 1.00 0.27 0.70
Shapiro 0.00 0.07 0.25 0.53 1.00 0.33 0.79
LR 0.00 0.01 0.13 0.43 1.00 0.25 0.62

NeuralNet
KS 0.00 0.06 0.21 0.48 1.00 0.29 0.76
Shapiro 0.00 0.08 0.25 0.50 1.00 0.32 0.80
LR 0.00 0.04 0.23 0.55 1.00 0.32 0.70

LightGBM
KS 0.00 0.08 0.26 0.53 1.00 0.33 0.81
Shapiro 0.00 0.11 0.30 0.57 1.00 0.36 0.86
LR 0.00 0.08 0.30 0.61 1.00 0.36 0.80

Table 4: Annualized Sharpe Ratios of Long-Short Portfolios

This table reports the annualized Sharpe ratios of the
long-short portfolios sorted by q-mean, median, and
regression mean under PCR, Lasso, and LightGBM,
from top to bottom, respectively.

q-mean median mean
PCR 0.62 0.59 -0.07
Lasso 1.00 0.70 0.15

NeuralNet 1.11 0.88 0.23
LightGBM 1.76 1.09 0.47
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Table 5: Alpha against benchmark models

This table reports alpha against Fama and French (1993) and Fama and
French (2015). The rows labeled FF3 is alpha against Fama and French
(1993) and FF5 Fama and French (2015).

Benchmark Median q-mean Mean

PCR FF3 1.78 1.26 -0.20
FF5 0.92 1.07 -0.40

Lasso FF3 2.64 1.13 0.24
FF5 1.93 0.98 0.43

NeuralNet FF3 0.21 2.20 0.20
FF5 1.31 1.60 0.53

LightGBM FF3 3.38 6.00 1.11
FF5 3.10 6.31 1.25
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Appendices
A Approximation to Expectation with Fixed τ ’s
We prove the validity of approximating expectations with the average of functions of quantiles
obtained from a fixed grid. For a random variable X with cdf F (marginal or conditional) on the
probability space (Ω, F , P ), where P is a probability measure, its induced measure on (R, B(R)) is
PX(B) = P (X−1(B)) for any measurable B ∈ B(R), the Borel sigma-algebra on R.

The expectation of X is defined as

E[X] :=
∫
R

xdPX =
∫

Ω
X(ω)dP. (A.1)

Apply a change of variable τ = F (x) and define F −1(τ) = inf {x : τ ≤ F (x)}. We have∫
R

xdPX

=
∫

[0,1]
F −1(τ)dPXF −1

=
∫

[0,1]
F −1(τ)dτ,

(A.2)

where the last equality holds if PXF −1(·) ≡ PX

(
F −1(·)

)
is the Lebesgue measure on [0, 1].

To show this, pick 0 ≤ a < b ≤ 1,

PXF −1([a, b])

=PX

([
F −1(a), F −1(b)

])
=P

(
F −1(a) ≤ X ≤ F −1(b)

)
=P

(
X ≤ F −1(b)

)
− P

(
X ≤ F −1(a)

)
=b − a,

(A.3)

where the first equality is by the non-decreasing monotonicity of F (·) and the last equality holds
by the definition of F −1. Note that F −1(·) ≡ q(·) is exactly the quantile function (Its conditional
counterpart for a given xi,t is F −1(τ |xi,t) ≡ q(τ |xi,t), which is denoted as qτ (xi,t) in the main text.
Here we use τ as the argument to highlight its central role in this proof).

For any measurable function g(·), the expectation is thus

E [g(X)] =
∫
R

g(x)dPX =
∫

[0,1]
g(F −1(τ))dPXF −1 =

∫
[0,1]

g(F −1(τ))dτ. (A.4)

The conditional expectations can be derived in a similar manner.
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For a partition of the unit interval 0 = τ0 < τ1 < τ2 < · · · < τJ = 1, the integral in equation
(A.4) can be approximated by the Riemann sum
(when max {τ1 − τ0, τ2 − τ1, . . . , τJ − τJ−1} → 0)

J∑
j=1

g(q(τ∗
j ))[τj − τj−1], (A.5)

where τ∗
j ∈ [τj−1, τj ]. In our implementation, we partition the unit interval into 100 sub-intervals

of length 0.01 and choose the middle point as τ∗
j . In such cases,

J∑
j=1

g(q(τ∗
j ))[τj − τj−1]

= 1
J

J∑
j=1

g(q(τ∗
j ))

= 1
100

100∑
j=1

g(q(τj)).

(A.6)

Specifically, for g(ri,t+1) = 1(ri,t+1 ≥ rc), we have E [g(ri,t+1)|xi,t] = P (ri,t+1 ≥ rc|xi,t) as
in equation (10). Similarly, for g(ri,t+1) = ri,t+1, we have E [g(ri,t+1)|xi,t] = E [ri,t+1|xi,t] as in
equation (11).
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B Optimal Hyperparameters
We summarise the tuned hyperparameters for the three machine learning methods. Figure B.1
shows the hyperparameter (the optimal number of principal components m) of PCR. The horizontal
axis shows the rank of quantiles, ranging from 0.5% to 99.5%. The vertical axis shows the chosen
optimal number of principal components. The solid curve shows the average of the 30 optimal
hyperparameters for the annual quantile regression models. The band is one time-series standard
deviation of the 30 annual optimal hyperparameters for each τ away from the corresponding average.
The solid curve shows a smile shape: first decreasing with τ and then increasing, showing that it is
easier to extract information from for the center of the conditional distributions than for the tails
where data are more sparse.

Figure B.2 shows the distribution of the 30 penalty coefficients λ used in the Lasso quantile
regression model. Following Belloni and Chernozhukov (2011), in each year, we compute one λ and
use it to train the model for all quantiles.

Figure B.3 shows the hyperparameters of LightGBM. From top to bottom, the pictures show
the learning rate, maximum depth of a tree, and the minimum number of observations on a leaf.
In each plot, the horizontal axis shows the rank of the quantiles, τ . The vertical axis shows the
value of the corresponding hyperparameters. The solid curve shows the time series average for each
quantile model over the 30 years. The band indicates the fluctuation of one time-series standard
deviation.
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Figure B.1: Distributions of m for PCR for All Quantile Models

The figure provides the distributions of the hyperparameters, the optimal number of principal components (m) of
PCR. The horizontal axis shows the indicator of the 100 quantiles, ranging form 0.5% to 99.5%. The vertical axis
shows the optimal m. The yellow curve shows the time series average of the optimal hyperparameters over the 30
years. The band shows the corresponding plus (minus) the time-series standard deviation from the average.
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Figure B.2: Distribution of λ for Lasso Models from 1987 to 2016

The figure provides the histogram of the 30 λ’s used to train the Lasso quantile re-
gression. We adopt the suggested in-sample optimal value in Belloni and Chernozhukov
(2011) instead of tuning directly for computational efficiency. The vertical axis shows the
frequency.
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Figure B.3: Distributions of Hyperparameters of LighGBM for All Quantile
Models

The figure presents the time-series averages and bands of one standard deviation of the three hyperparameters
used in LightGBM. From up to bottom, the pictures show the time-series averages for learning rate, maximum
depth, and minimum number of observations on a leaf. In each plot, the horizontal axis shows the indicator for
the 100 quantiles, ranging from 0.5% to 99.5%. The vertical axis shows the hyperparameter value. The thicker
curves show the time-series averages of the hyperparameter across the 30 years. The bands show the plus (minus)
one standard deviations of the hyperparameters from the corresponding time-series averages.
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C Solution to the Multiple Comparisons Problem with
q Value
Since we perform hypotheses tests for all the firms simultaneously, we need address the multiple
comparisons problem. The multiple comparisons problem refers to when one tests several hy-
potheses simultaneously, she might reject some hypotheses by mistake. Popular corrections for
the multiple comparisons problem include Bonferroni (1936) method and its modifications that
control the family wise error rate (FWER), Benjamini and Hochberg (1995) that controls the false
discovery rate (FDR) and Storey (2003) that controls positive false discovery rate (pFDR). The
Bonferroni (1936) method is the most strict but lack practical value when we compare thousands
of hypotheses. The Benjamini and Hochberg (1995) approach works on controlling the proportion
of incorrect rejections out of all the hypotheses considered. Storey (2003) is based on Benjamini
and Hochberg (1995) and control the incorrect rejection rate over only the ones that are actually
rejected. We adopt the more conservative Storey (2003) approach and use their proposed q-value
to control the pFDR12.

The definition of q-value is quite similar to that of p-value. For instance, for a two-sided single
hypothesis test with a z statistic, the p-value is defined as

Pr(|Z| ≥ z0|H0 is true), (C.7)

where Z is the test statistic and z0 is its observation and H0 is the null hypothesis. Similarly,
q-value is defined as

Pr(H0 is true||Z| ≥ z0). (C.8)

Intuitively, the q-value measures the probability of an incorrect rejection, given a significant test
statistic. The formal proof of the validity of q-value relies on the equivalence between pFDR and
Pr(H0 is true||Z| ≥ z), which is shown in Theorem 1 of Storey (2003). With smaller q-values (5%
in our paper), we are confident to believe that the rejected density forecasts are in fact inaccurate.
Moreover, the identical distribution of KS, Shapiro, and LR tests satisfy the requirement of Storey
(2003).

Specifically, LightGBM still offers the most accurate density forecasts among the three machine
learning methods. The median and mean q-values for LightGBM of the LR tests are 0.3334 and
0.3101; those for PCR are 0.1794 and 0.1896, while for Lasso, the numbers decrease to 0.0850 and
0.1115. The proportions of q-values being greater than 5% are reported in the last column of Table

12The research is burgeoning in controlling both the Type I and Type II errors. For example, see Harvey,
Liu, and Zhu (2015) and Harvey and Liu (2020). We note that in a large bootstrap analyzing 18,000 tests,
Harvey and Liu’s (2020) results show that Storey (2003) is the most powerful, in that it offers the most
strict control of the Type II error rate. In our context, a Type II error occurs when we falsely claim that
one of the density forecasts is accurate. Our adoption of the q-value thus warrants our goal of controlling
false claims of accurate density forecasts.
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C.1. More than 90% of the LightGBM forecasts have larger q-values greater than 5%, showing that
LightGBM has the strongest predictive power, followed by PCR with about 80% of firm passing
the tests. Lasso produces about 70% accurate forecasts.

Table C.1: Evaluation of Conditional Density Forecasts Using q-values

This table reports the evaluation of the conditional density forecasts using the Kolmogorov-Smirnov (KS) test, the
Shapiro normality test, and the Berkowitz (2001) likelihood ratio (LR) test for PCR, Lasso, and LightGBM with
the Storey (2003) q-value approach. From top to bottom, the q-values are obtained for PCR, Lasso, and LightGBM
predictions. The last column, denoted as P (> 0.05) shows the proportion of firm-time observations that pass the
corresponding test at 0.05 level, i.e. q > 0.05.

ML test min Q1 median Q3 max mean P (> 0.05)

PCR
KS 0.0000 0.0821 0.1475 0.2169 0.3148 0.1498 0.8596
Shapiro 0.0001 0.1075 0.1806 0.2540 0.3665 0.1823 0.9224
LR 0.0000 0.0535 0.1794 0.3156 0.4444 0.1896 0.7584

Lasso
KS 0.0000 0.0314 0.0853 0.1543 0.2501 0.0958 0.6606
Shapiro 0.0000 0.1119 0.2049 0.2934 0.4136 0.2044 0.8951
LR 0.0000 0.0143 0.0850 0.1921 0.3340 0.1115 0.6041

LightGBM
KS 0.0004 0.0970 0.1593 0.2194 0.3097 0.1580 0.9090
Shapiro 0.0005 0.1914 0.2564 0.3222 0.4233 0.2529 0.9789
LR 0.0000 0.1822 0.3334 0.4503 0.5552 0.3101 0.9183
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